指数运算公式推导(指数运算公式)

由:sddy008 发布于:2022-07-30 分类:入门基础 阅读:138 评论:0

当投资者打算进行投资时面临着多种选择,如选择了股票投资,就要了解股票的基础知识和投资策略,接下来,小编分享关于《指数运算公式》的文章,希望对你有所帮助!喜欢的朋友可以收藏本网站。

本文目录一览:

指数的基本公式

指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。

指数与幂的概念的形成是相当曲折和缓慢的指数符号( Sign of power) 的种类繁多,且记法多样化。

我国古代“幂”字至少有十各不同的写法。

刘徽为《九章算术》作注,在《方田》章求矩形面积法则中写道:“此积谓田幂,凡广从相乘谓之幂( 长和宽相乘的积叫作幂) 。”这是第一次在数学文献上出现幂。

《准南子·天文训》讲到乐律,有这样几句话:“故黄钟之律九寸,而宫音调;因而九之,九九八十一,故黄钟之有选举权立焉......十二各以三成,故置一而十一三之,为积分十七万七千一百四十七,黄钟大数立焉。”可翻译如下:发出黄钟音律的管长 9寸,它的音调叫作宫。用 9 去乘它得81。81 这个数叫作黄钟数。12 律的每一个是根据三分损益这个原则造成的。所以将 3 乘了11次,得到的积,分管长 177147等份,这177147 叫作黄钟大数,以别于黄钟数81。很明显,“置一而十一三之”就是乘方运算,11 就是现在的指数。整句话包含式子

,具有指数的初步概念。

1607 年,利玛窦和徐光启合译欧几里得的 《几何原本》,在译本中徐光启重新使用了幂字,并有注解:“自乘之数曰幂。”这是第一次给幂这个概念下定义。

至十七世纪,具有“现代”意义的指数符号才出现。最初的,只是表示未知数之次数,但并无出现未知量符号。比尔吉则把罗马数字写于系数数字之上,以表示未知量次数。其后,开普勒等亦采用了这符号。罗曼斯开始写出未知量的字母。1631 年,哈里奥特( 1560-1621) 改进了韦达的记法,以 aa表示

, 以aaa 表示

。1636 年,居于巴黎的苏格兰人休姆( James Hume) 以小罗马数字放于字母之右上角的方式表达指数,如以

表示

,该表示方式除了用的是罗马数字外,已与现在的指数表示法相同。笛卡儿( 1596-1650) 以较小的印度阿拉伯数字放于右上角来表示指数,是现今通用的指数表示法。

指数运算公式8个

八个公式:

1、y=c(c为常数)y'=0;

2、y=x^ny'=nx^(n-1);

3、y=a^xy'=a^xlnay=e^xy'=e^x;

4、y=logaxy'=logae/xy=lnxy'=1/x;

5、y=sinxy'=cosx;

6、y=cosxy'=-sinx;

7、y=tanxy'=1/cos^2x;

8、y=cotxy'=-1/sin^2x。

加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'。

乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)。

除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。

在某种情况下(基数0,且不为1),指数运算中的指数可以通过对数运算求解得到。

幂(n^m)中的n,或者对数(x=logaN)中的 a(a0且a不等于1)。

在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。

当a1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在x等于0的时候,y等于1。当0

指数计算公式是什么?

1、loga(MN)=logaM+logaN;

2、logaMN=logaM-logaN;

3、logaMn=nlogaM (n∈R);

a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。

扩展资料:

指数作为幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角。幂运算(指数运算)是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减。幂的幂,底数不变,指数相乘。下面a≠0。

当a1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0a1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。

指数的公式是什么?

指数函数运算法则公式:

同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)

同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)

幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)

积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)

指数函数

指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a0,a≠1)叫作指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。

指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

指数函数是非奇非偶函数。指数函数具有反函数,其反函数是对数函数,它是一个多值函数。

几个基本的函数的导数

y=a^x,y'=a^xlna

y=c(c为常数),y'=0

y=x^n,y'=nx^(n-1)

y=e^x,y'=e^x

y=logax(a为底数,x为真数),y'=1/x*lna

y=lnx,y'=1/x

y=sinx,y'=cosx

y=cosx,y'=-sinx

y=tanx,y'=1/cos^2x

指数运算的公式有哪些?

1、同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。

2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。

3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。

4、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。

基本的函数的导数:

1、y=a^x,y'=a^xlna。

2、y=c(c为常数),y'=0。

3、y=x^n,y'=nx^(n-1)。

4、y=e^x,y'=e^x。

5、y=logax(a为底数,x为真数),y'=1/x*lna。

6、y=lnx,y'=1/x。

7、y=sinx,y'=cosx。

8、y=cosx,y'=-sinx。

9、y=tanx,y'=1/cos^2x。

扩展资料:

记忆口诀

有理数的指数幂,运算法则要记住。

指数加减底不变,同底数幂相乘除。

指数相乘底不变,幂的乘方要清楚。

积商乘方原指数,换底乘方再乘除。

非零数的零次幂,常值为1不糊涂。

负整数的指数幂,指数转正求倒数。

看到分数指数幂,想到底数必非负。

乘方指数是分子,根指数要当分母。

参考资料来源:百度百科-指数运算法则

指数运算10个公式是什么?

指数运算公式是:

1、a^log(a)(b)=b

2、log(a)(a)=1

3、log(a)(MN)=log(a)(M)+log(a)(N)

4、log(a)(M÷N)=log(a)(M)-log(a)(N)

5、log(a)(M^n)=nlog(a)(M)

6、log(a)[M^(1/n)]=log(a)(M)/n

注意:

和对数相比,指数及指数运算要简单得多。但是还是有些基础不是很好的高中同学,对指数运算不够熟练,导致影响后面知识的学习。如对数、指数函数、数列、二项式定理等都需要用到指数及指数运算。

指数运算法则是一种数学运算规律。两个或者两个以上的数、量合并成一个数、量的计算叫加法。(如:a+b=c)。两个数相加,交换加数的位置,和不变。 a+b=b+a。三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 (a+b)+c=a+(b+c)。

今天的内容先介绍到这里了,阅读《指数运算公式》完毕之后,如果喜欢的话可以收藏起来哦,想要学习更多的理财知识,敬请关注合森财富通。

相关阅读

评论

精彩评论